
1 
 

ELECTRONIC SUPPLEMENTARY MATERIAL 

 

C-terminal Interactions Mediate the  

Quaternary Dynamics of !B-Crystallin 

 

Gillian R. Hilton, Georg K. A. Hochberg, Arthur Laganowsky,  

Scott I. McGinnigle, Andrew J. Baldwin* & Justin L.P. Benesch* 

Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of 

Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3QZ, U.K. 

 

Contains: 

Supplementary methods 

Figure S1: IM-MS titration data and fits 

Figure S2: Binding isotherms for titration data 

Table S1: Determined thermodynamic and kinetic quantities 

Supplementary references 

 

 



2 
 

SUPPLEMENTARY METHODS 

Ligand binding model 

In the absence of peptide ligands, L, the truncated !B-crystallin constructs, P, exist in 

equilibrium between monomeric, P1 and dimeric, P2, forms. Given that each molecule of P 

has the capacity to bind one molecule of L, and that oligomerisation rarely proceeds past the 

level of the dimerisation in these constructs, we have six species to consider, P1, P1L, P2, P2L, 

P2L2, and L. Interpreting binding data therefore requires consideration of six coupled 

equilibria and their corresponding association constants. 

P1 + L! P1L,KA,0 =
[P1L]
[P1][L]

P2 + L! P2L,KA,1 =
[P2L]
[P2 ][L]

P2L+ L! P2L2 ,KA,2 =
[P2L2 ]
[P2L][L]

P1 + P1! P2 ,KA,3 =
[P2 ]
[P1]

2

P1L+ P1! P2L,KA,4 =
[P2L]
[P1L][P1]

P1L+ P1L! P2L2 ,KA,5 =
[P2L2 ]
[P1L]

2

 

There is some degeneracy within the association constants in this scheme: 

,2 ,4 ,5 ,0A A A AK K KK =  and ,1 ,3 ,4 ,0A A A AK KKK = . These equalities have an important physical 

interpretation, in that weakening the monomer/dimer interface results in a decrease in species 

like P2L and P2L2. The dimer interface free energy and the effective association constants for 

the dimer species are therefore closely linked. Due to the degeneracy, rather than being 

described by six equilibrium constants, the system is instead completely defined by four 

constants. In what follows, we choose to define properties in terms of KA,0, KA,3 KA,4 and KA,5, 

with KA,2 and KA,1 determined using the relations stated above. The total concentration of 

ligand is given by: 
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[LTot ]= j[PiLj ]
j=0

i

!
i=1

2

! +[L]

= [L]+[P1L]+[P2L]+ 2[P2L2 ]

= [L]+ KA,0[L][P1]+ KA,4KA,0[P1]
2[L]+ 2KA,5KA,0

2 [P1]
2[L2 ]

 

Which is quadratic in [L]. Solving for [L] and taking the positive solution yields: 

( ) ( )22 2 2 2
,0 1 ,4 ,0 1 ,0 1 ,4 ,0 1 ,5 ,0 11 1 8

[ ]
[ ] [ ] [ ] ] ]

2

[ [A A A A A A Tot A A

Tot

P K K P PK K L K
L

L

K K P K P+ ++ + + +
=  

The quantity of free peptide can be directly determined if the four equilibrium constants, total 

peptide concentration and quantity of free monomeric protein is known. Similarly, the total 

concentration of protein is given by: 

[PTot ]= i[PiLj ]
j=0

i

!
i=1

2

!

= [P1]+[P1L]+ 2 [P2 ]+[P2L]+[P2L2 ]( )
= [P1]+ KA,0[P1][L]+ 2KA,3[P1]

2 + 2KA,0KA,4[P1]
2[L]+ 2KA,5KA,0

2 [P1]
2[L]2

 

Inserting the expression for [L] into this expression gives an expression for [Ptot] in terms of 

[P1] and the four equilibrium constants. In the binding experiments described in the 

manuscript, the total quantity of protein has been experimentally determined, and so the 

equation can be solved numerically for [P1] for any set of four trial equilibrium constants. 

With these values, all remaining concentrations [PiLj] are trivially back-calculated. 

Fitting the model to the data 

From the IM-MS experiments, we have experimental measurements of the signal intensity 

from each species, ( )i jI PL , such that the total signal intensity is ( )
2

1 0
( ) i j

i

i j
I Tot I LP

= =

=!! . For 

any given set of equilibrium constants, we can evaluate the following "2 function: 
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Where ( )i jI PL , ( )I Tot  and [PTot] are determined from experiment, and the set of [PiLj] are 

obtained as a function of the four equilibrium constants, as described above. Assuming that 

signal intensities are proportional to the concentrations of the corresponding species in 

solution, the set of equilibrium constants that return the lowest "2 value are those that best 

describe the species present in solution. 

Simplifying the model 

The equilibrium scheme above implicitly allows for ligand binding to influence the strength 

of the dimer interface, and vice versa. For example, if KA,5>KA,3 the dimer interface is 

effectively strengthened by the binding of two ligands. This model is a function of four 

equilibrium constants and is the most complex considered in this study. We can make 

simplifying assumptions that result in models of reduced complexity. 

If we make the assumption that KA,3=KA,4, which results in the further equality KA,0=KA,1, the 

simplified scheme states that a single ligand binds both monomers and dimers with equal 

affinity. This model still allows the second ligand to bind with a different affinity, and is 

specified by three free parameters rather than four.  

Finally, we can assume that KA,3=KA,4=KA,5 then  KA,0=KA,1=KA,2. This model assumes that 

binding the ligand does not alter the dimer interface in any way, and that ligand binding is 

entirely independent of oligomerisation. This relatively simple model is specified by only two 

free parameters, and is the least complex of those tested in this study. 

Which model is ‘correct’? 

Fitting data to a model with an increased number of free parameters will result in a lower "2. 

It is important to distinguish whether this lowering in "2 comes from an improved physical 

model, or if it has instead arisen due to unfortunate patterns in the noise. This distinction can 

be evaluated statistically by performing an F-test.  

In this study, three models have been considered as described above, each with increasing 

statistical complexity being defined by 2, 3 or 4 free parameters. To determine if the 

increased complexity is statistically justified, we determined the lowest "2 of each model, and 

noted the number of associated ‘degrees of freedom’, #, equal to the number of free 

parameters in the model minus the number of data points. We could then assess the 
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probability of whether the reduction in "2 in moving from a simple to a complex model is 

justified by the reduction in degrees of freedom by evaluating the P-level: 

2

22
, ,

2
complex simple complex complex

R
simple

P
! ! ! "

#
"

$ %
= & '&

(
'

) *
 

Where !R is the regularised ! function, defined as 1 1

0

(( , , ) (1
( ( )

))
)

x y
R

zx y
x

x y z t t dt
y

! " "# +

# #
= "$ , 

and $ is the Gamma function, 1

0
( ) dz tz t e t

! " "# = $ , in the relevant z>0 limit. Should the 

probability be less than 0.06 (6%), then we can conclude that the improved fit using the more 

complex model is statistically justified. If the probability is greater than 6%, then noise in the 

data is most likely responsible for the improve "2. In such a situation, we cannot reliably 

distinguish between the two models and so we stay at the complexity of the simpler model.  

In the data described in the tests, the 3 parameter model was found to be statistically justified 

for both the !BPal and !BExt binding datasets according to these definitions. In the case of the 

!BCnt peptide, there was no significant reduction in moving from the 2 to the 3 parameter 

model. There was no instance here in which the 4 parameter model was statistically justified. 

Determination of errors in fitted binding affinity parameters 

Multiple repeats of the samples were run on independent protein separations on different days 

in order to get reliable error bars. Typically, 3-6 independent measurements were performed 

on each peptide / concentration combination. The error bars shown in the isotherms in figure 

S2 represent the standard error of the mean / 1M N! != "  where % is the standard 

deviation of the repeated measurements. To obtain numerical error estimates of the affinity 

constants, a boot-strapping procedure was employed. Here, a new dataset was calculated 

from randomly sampling the data points in a manner that preserves the total number of data 

points at the end, with some data points randomly double-sampled and some not at all. The 

fitting is repeated to obtain a new set of binding affinities. By repeating this procedure 1000 

times, a histogram of the affinity coefficients can be created whose mean is identical to the 

best fit from the raw data, and whose width reflects the numerical uncertainty in the 

parameter in question (Figure 4) . 

Adjustments due to non-specific association in the gas phase 
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In a typical nanoelectrospray MS experiment, the protein will be at concentrations on the 

order of 10 µM. In the case where KD is on the order of 100 µM or weaker, it is necessary to 

mix with ligand at concentrations that approach 100 µM. Under these conditions of relatively 

high concentration, the probability of having a peptide and an !B-crystallin domain in the 

same droplet becomes appreciable, appearing in the spectrum as a low concentration bound 

species (1). Such “non-specific” binding effects occlude the effects of “specific” binding 

present in the solution phase. 

Considering the case of a binding equilibrium where both specific (present in solution) and 

non-specific (formed during the electrospray process) are detected, the equilibria and 

corresponding association constants are given by: 

P + L! PLspec ,KA
spec =

[PLspec ]
[P][L]

P + L! PLnon ,KA
non =

[PLnon ]
[P][L]

 

The total protein concentration will be given by 

PTot = [P]+[PL
spec ]+[PLnon ]

= [P]+[P][L] KA
spec + KA

non( ) = [P]+ KAeff [P][L]
 

This leads to a useful general result, eff non spec
A AAK K K= + . The effective association constant is 

that which is determined through neglecting the effects of non-specific association. We arrive 

at an estimate of the required association constant through spec eff
A
non

A AKK K= ! . Providing we 

can estimate the magnitude of non-specific binding effects, they can be trivially subtracted. 

When the association constant is more than an order of magnitude larger than the effects of 

non-specific binding, the correction is negligible. However, when the effective constant and 

the non-specific constant are on the same order of magnitude, the correction will be large.  

In this work, in order to estimate the magnitude of effects due to non-specific association, 

128uM of the !BPal peptide was added to the unrelated protein cytochrome C. In the resulting 

spectra, a bound state populated to approximately 10% state was detected. This corresponds 

to an effective KD of 1 mM. In this study, this value is taken as an approximation for non
DK . 

The association constants that describing peptide binding, KA,3, KA,4 and KA,5 are susceptible 
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to effects of this kind. Values reported in the manuscript for these constants have had non-

specific effects subtracted.  It is important to note that this correction is small for all KD 

values presented in this work. 
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FIGURE S1 

 

 

 

Comparison of both IM-MS experimental data (blue) and fits (red) obtained using the 

CHAMP algorithm, as described in the text, for titrations of (a) !BPal and (b) !BExt with 

!BDom. The fitted spectra are in excellent agreement with the experimental data, as can be 

seen from the one-dimensional projections. 
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FIGURE S2 

 

 

Two dimensional IM-MS spectra were acquired for each combination of peptide 

concentration and type binding to with !BPal between 3-6 times, allowing a mean and 

standard error of each observed species to be defined. The data were then fitted to the binding 

affinity model described above. The two, three and four parameter models were fitted to the 

data, and an F-test used to decide if the fitting quality is sufficiently improved as to justify the 

inclusion of additional parameters. In the case of !BPal (left) and !BExt (middle), using the 

three parameter model rather than the two parameter was justified (P-level < 6%). Physically, 

the two parameter fit was poor as far less [P2L2] was observed than the model would predict. 

The reduction in "2 stems from the three parameter model allowing for this, which enables us 

to conclude that binding the second peptide is significantly more difficult than binding the 

first. By contrast, no significant reduction in "2 was found moving from the two to the three 

parameter model in the case of the negative-control peptide !BCtl (right). In no instance was 

fitting using the four parameter model statistically justified. 
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TABLE S1 

 

 &Ge+d !Gd !Ge !!Ge+d !!Gd !!Ge !!Ge
R !!Ge+d

‡ !!Ge
‡ !!G+

‡ 
"BWT -8.8 -7.1 -1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
"BE -9.0 -7.3 -1.8 -0.2 -0.1 -0.1 2.6 -1.1 -1.2 -1.4 
"BR -9.3 -8.2 -1.1 -0.5 -1.0 0.6 1.8 -1.4 -2.5 -1.9 
"BER -9.1 -8.2 -0.9 -0.4 -1.1 0.8 4.3 -1.2 -2.3 -1.6 
"BERT -9.2 -8.7 -0.5 -0.4 -1.6 1.2 7.4 -1.7 -3.3 -2.1 
"BII -9.1 -8.0 -1.1 -0.3 -0.8 0.5 38.6 -1.6 -2.4 -1.9 
"BIPI -9.8 -10.1 0.3 -1.0 -3.0 2.0 40.0 -0.6 -3.5 -1.6 
"BTRE -8.8 -6.9 -2.0 -0.1 0.2 -0.3 10.0 -1.2 -1.0 -1.3 
 

Table of thermodynamic and kinetic quantities obtained from our analysis of with !B-

crystallin mutants. &G and !!G values are in kJ/mol. !!G=!GMutant–!GWT for both 

thermodynamic and kinetic parameters. &G values are defined according the following, 

where MA, N, ke+d, ke and k+[!B1] are parameters extracted from fitting the data to the model 

as described previously (3), R is the gas constant, T is the thermodynamic temperature, # is 

the characteristic vibration frequency across the reaction co-ordinate, and ' is the 

transmission coefficient. The terms in #' are unimportant in this instance as they cancel when 

calculating the &&G‡ values. !!GR values were calculated using a Rosetta point mutation 

protocol as described in the text. 

  

!Ge+d = "RTlnMA

!Gd = "RT lnN

!Ge = "RT ln MA / N( )
!Ge+d

‡ = "RT ln ke+d /!"( )
!Ge

‡ = "RT ln ke /!"( )
!G+

‡ = "RT ln k+[P1] /!"( )
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